
Theoret. chim. Acta (Berl.) 16, 331 345 (1970) 

A Semi-Empirical Approach to the Estimation of ESR 
Isotropic Hyperfine Coupling Constants in Aromatic 

Radicals 
M. F. CHIU and B. T. SUTCLIFFE 

Department of Chemistry, University of York, Heslington, York, England 

Received July 28, 1969 

Using a generalised product wave function, an expression is given for the isotropic hyperfine 
coupling constant at a given atom in an aromatic K-radical. By a consistent scheme of approximation 
the expression is cast in a form in which the coupling constant at a given atom in the radical can be 
evaluated from the results of a Hfickel calculation, provided that certain integrals are known. A 
scheme for assigning and relating these integrals is given, coupling constants are calculated for 
Iac, 14N, tTO and 19F atoms, and the calculations compared with experiment. 

Bei Verwendung einer Produktwellenfunktion wird ein Ausdruck fiir die isotrope Hyperfein- 
kopplungskonstante eines Atomes in einem aromatischen ~-Radikal angegeben. Durch ein kon- 
sistentes N~iherungsschema wird der Ausdruck in eine Form gebracht, bei der die Kopplungskonstante 
eines Atoms im Radikal aus Resultaten einer Htickelrechnung ausgewertet werden kann, voraus- 
gesetzt, dab gewisse Integrale bekannt sind. Ein Schema, um diese Integrale zu kennzeichnen nnd 
miteinander in Beziehung zu setzen, wird angegeben, Kopplungskonstanten werden ffir i3C, 14N, 
170, und 19F-Atome ausgerechnet und die Rechnungen mit dem Experiment verglichen. 

Calcul d'une expression pour la constante de couplage hyperfin isotrope sur un atome dans 
un radical aromatique ~ ~ l'aide d'une fonction d'onde produit g6n6ralis6. A l'aide d'un sch6ma 
d'approximation coh6rent cette expression est mise sous une forme telle que la constante de couplage 
sur un atome du radical peut ~tre +valu6e/t partir des r6sultats d'un calcul de type Htickel, pourvu 
que certaines int6grales soient connues. On fournit un proc~d6 pour d6terminer et relier entre elles 
ces inthgrales; les constantes de couplage pour 13C, ~4N, IvO et i9F sont calcul4es et compar4es aux 
donn6es exp6rimentales. 

Introduction 

The theory of ESR isotropic hyperfine coupl ing constants  has been expounded 
in  several ways. For  a romat ic  "re-radicals" the approaches of McConne l l  [1], of 
McLach lan  et al. [-2] and  of Karp lus  and  Fraenkel  [33 are perhaps the best 
k n o w n  and  most  frequently applied. 

The aromat ic  p ro ton  splittings of the ESR line, the relat ionship (1) 

all= (1) 
is often assumed, where a n is the p ro ton  coupl ing constant ,  ~ is the "re spin 

density" (or, more  correctly, the square of the coefficient of the 2p atomic orbital  
in the singly occupied rc MO) on the carbon  a tom to which the p ro ton  is at tached;  
Qn is a numer ica l  cons tant  assigned empirically (for most  systems, Qn _- 22 - 27 
gauss ). For  1 a C and he teroa tom splittings, a simple relat ionship like that  for a n 
seems inadequate.  In  such cases, it is c o m m o n  to assume that relat ionship (2) 

holds, a x = tr QX e~ (2) 

where cont r ibu t ions  from the Q~ on a tom centres adjacent  to the he teroa tom X, 
are also considered. So far, it appears that  little a t tempt  has been made to relate 
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the QX for each system, the values chosen being almost always assigned empirically 
in such a way as to give closest agreement between the MO calculations of the 
moment (usually ordinary Hfickel calculations) and the observed ESR spectrum. 

In the following theory we attempt to develop a new system of relating results 
of Hfickel MO calculations with experiment and at the same time show how the 
,,QX,, for one type of aromatic radical can be both interrelated and also related 
to the ,,QX,, for another type (e.g., hydro-carbon radicals vs. heterocyclic radicals). 

Theory 

Our approach is essentially a development of that proposed by McWeeny 
and Sutcliffe [4] in which the mechanism through which nuclear spin and 
unpaired ~z-electron spin are coupled is accounted for by "spin polarisation" of 
the underlying a-electron framework. 

Suppose that a given free radical has N electrons (with N odd), in a spin 
state (S, M). Represent this system by a "generalised product" wavefunction 
(McWeeny [5]) of strongly orthogonal group functions viz: 

~ 0 = "f~ I~ A, M f i  ~ B~ ~) Cc (3) 
i=1 

where the group function ~a,M describes NA electrons (NA odd) and it alone 
has the spin eigenvalues (S, M). The m functions ~B~ represent m conventional 
bonds, each function describing a pair of electrons coupled to a singlet spin state. 
~cc represents the (inert) core of the molecule and describes an even number 
(No) of electrons in a singlet spin state. 

Polarisation of the bonds can be induced by means of configuration interaction 
with excited state functions in which one bonded group at a time is excited to a 
triplet state and the functions recoupled to doublets. It has been shown [4] 
after this configuration interaction the spin density function Q~(r, r') (to first 
order) is given by: 

QI(F,~,,)~QA(MM[F, Ft)_2 ~ HKBO ( 8  1 S )  QB~(bbo]F,~., ) 
i=1 E(O--'~KB) 0 

(4) 
=Q~(MMlr,  r,) + 2M m~ kB,A(bbo]aa) Q~'(bbolr, r') �9 

S i=1 E(O~tCB) 

The general definitions of the terms in Eq. (4) are given in [4] and we shall 
give later the specific forms that they take in this work. 

We wish to use the relation (4) to assign spin densities at a centre X which 
is embedded in various different ways in a conjugated system. Some examples 
of the kind of embedding that we shall consider are shown symbolically below: 

H 
I 

X X 

C C C--X C C 
I I ~ I I 

(a) (b) (c) 
Fig. 1 

We shall be particularly interested in the cases where X is 13C, 14N, 170, or X9F. 
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Though we shall not be concerned with performing nonempirical calculations 
to find Ql(r, r') we shall specify fairly closely how the group functions are to be 
constructed in order to show explicitly the detailed form of Eq. (3) and also to 
indicate the validity of the approximation used. 

We imagine a basis set composed of ls, 2s and 2p Slater type orbitals on every 
carbon atom and on the atom X (the "heavy" atoms), and a ls orbital on each 
hydrogen atom. The 2s orbitals on the "heavy" atoms are Schmidt orthogonalised 
against the ls orbitals on the same centre. The basis is then transformed so that 
the orthogonalised 2s orbitals and the 2p orbitals on any "heavy" atom are 
mixed to give sp 2 hybrids lying in the plane of the conjugated system. This trans- 
formed basis is then symmetrically orthogonalised so that group functions 
constructed in this final basis will automatically satisfy the strong orthogonality 
requirement. 

We shall concentrate entirely on conjugated systems in doublet states so 
that a natural choice for ~A,M is then a determinant of MO's doubly occupied so far 
as possible, with the MO's constructed from the (orthonormal)2 p~AO's (that 
is, those orthogonalised orbitals which are antisymmetric with respect to reflection 
in the molecular plane). Similarly, ~c~ will be a determinant of doubly occupied 
MO's with the MO's constructed from the ls orbitals on the "heavy" atoms. 

The group functions ~B~ for the ith bond are constructed from a pair of 
(orthogonalised) hybrids tl~ and t2z which point at one another from the centres 
at either end of the bond. First a molecular orbital is constructed from these 
hybrids 

B, = c f '  tl, + c~, t2, (5) 

and the singlet function ~B~ is constructed as 

where 

~bBg(Xl, X2) = Bi(r 0 Bi(r2) Ooo(Sl, s2) (6) 

1 
~00(S1, $2) = ~ -  [-0~(S1)/~($2) -- fl(S1) ~($2)~] (7) 

where we have used x to denote space and spin variables collectively and r to 
denote space and s to denote spin variables. 

The triplet bond functions OBgmm= 1, 0 , - 1  which are needed for the 
configuration are constructed with the aid of the antibonding partner to B~ viz. 

B~ = C ~ '  t~  - Cf' ~, (8 )  
as : 

1 
q~Bg~(Xl, x2) = ~ -  [Bi(rl) Bi(ra) - B,(rl) Bi(r2)l 01,,(sl, s2) (9) 

with: 
O1,1(sl, s2)= .(sO ~(s2), 
O1, o(Sl, s2) = E~(s0 ~(s2) +/~(sl) ~(s2)]/~,  (10) 

O1, -1 (sl, s2) =/~(s~)/~(s2). 

For those group functions involving a "heavy" atom-hydrogen bond, the role 
of one of the hybrids is played by the ls orbital on the hydrogen. 
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Using these rules of construction for the group functions, and considering the 
state S -- M = �89 Eq. (4) reduces to: 

Ql(r,r ' )=no(r)n*(r ' )+2 ~ <Bin~176 Bi(r)B*(r') (11) 
i=1 E(O--+KBi) 

where n o is the singly occupied MO from q~a, ~- and where 

(~ino]g[noBi)= ~B,(rOno(r2) 1 no(rOBi(ra)drldr 2 (12a) 
3 rl 2 

E(O--,~CB,)= <B, lh lB i>-  <BilhlBi> 

+ <tlit2ilglt~it2~> - <tlit2,lgl t2iqi> - <BiBilglBiBi> 

+ <noBilglnoBi> - (noBilglnoB~> -~<noB~lglBino> 

+ �89 lglB, no) (12 b) 

+ ~, {2[<B~slglg, s > -  (Bis lglBis)]  
s@~ro Bi 

- [<BislglsB,> - <BislglsBi>]} 

where in the second sum in (12b) s is one of the Bi. 
The operators in these equations are defined by 

Nn e 2 h2 V2 Zn e2 
= ~ - m  - ~ - - '  g = -  (13) 

n = 1 Fni F12 

where Z,  e is the charge on the n th nucleus. 
For spin densities at the point r x in the nodal plane of the n o orbitals Eq. (11) 

reduces to 

Ql( rx)=2 2CroCs 2 <Bip~Ig[p'~Bi> ~i(rx)Bi(rx) (14) 
i=  1 r,s E ( O  ~ ~:~,) 

where we have formed no, by the L.C.A.O. approximation: 

~o = F~C~op~. (15) 
r 

A straightforward means of normalising the bond orbitals is to write 

Cf ~= cos0i, C ~ =  sin0i (16) 

so that 

similarly 

B*(rx) Bi(rx) = �89 - t22~(rx)) 

- cos 20itli(rx)t 2i(rx) 
(17) 

(Bip~[gIp~Bi) =�89 (18) 

E (0~  ~cB,) is always positive and may be identified approximately with the singlet 
to triplet excitation energy in the group ~B~. 

In order to put Eq. (14) in a form suitable for semi-empirical calculations we 
must make certain approximations. The approximations made are set out below, 
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and are consistent with our basic assumptions about the form of the wave function, 
that is these assumptions are plausible if the molecule is made up of well separated 
"groups" of bonds, each bond represented by a group function strongly orthogonal 
to all other group functions. 

Approximations 

1. We assume that E (0~  xB,) is the same for all like bonds. 
2. We assume that all integrals in the expansion of (BiTr o [gl~zoBi) 

are zero except those of the type 

( t l ipTlglp~t l , )  and (tllp~[glp~t21) 

where p; is on the atom from which tli originates and p~ is on the atom from which 
t2i originates. 

3. For spin density at a site on the ring we assume we need retain only those 
terms in the sum (14) which refer to bonds adjacent to this site. For a site outside 
the ring we need retain only the ring-site term in the sum. 

4. The number Bi(rx)Bi(rx) is assumed well approximated by _+ �89 Oit2(rx), 
where tx(rx) is the hybrid whose origin is the atom, X, the sign being determined 
according to whether t x is qi or t2i. 

Using these approximations in Eq. (14) we can derive the expressions given 
below for the spin density at the nucleus X, which is related to the isotropic hyper- 
fine coupling constant at X (using conventional notation) by: 

8~ 
a x = ~ -  gflvxhQ~(rx). (19) 

Proton Splittings 

Though we shall not be much concerned with assigning proton coupling 
constants in conjugated hydrocarbons it is appropriate to show that our scheme 
can in fact yield the usual McConnell type relation. After a little manipnlation it 
follows from (14) that 

[ Cro[ 2 sin 220cn 
Ql(rn)= -- 2E(0_~:cH ) (tcP~lglp~tc)[lS(rH)] 2 (20) 

where t c is the Sp 2 hybrid pointing from the r th carbon atom to the adjacent proton, 
and 0cn is the angle appropriate to the CH bond (cf Eq. (16)) and E(0-> Kcu ) the 
C - H  bond excitation energy. The exchange integral is positive so that the spin 
density at the proton QI (rn) must be negative; so the proton coupling constant 
is given by 

o . _  

a n = ~ -  gflTnhQ(rH) 
(21) 

= QcH.lcrol z . 

Hence our scheme does yield the familiar McConnell relationship [1]. The validity 
of this has been extensively investigated, and it is encouraging that the theory 
reduces to this familiar form for the proton splittings. 
24 Theoret. chim. Acta (Bed.) Vol. 16 
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We may also easily derive a similar expression for any X -  H bond, for example, 
for a pyrrole-type N -  H bond, we obtain: 

Ql(rn) = - 1%12 sinZ20NrI <tNpTlglp~tN) lls(rn)l 2 (22) 
2 E (0--* ~CNH) 

Systems in which X is Embedded in the Conjugated System 

For all the embeddings of X shown in Fig. 1, it is straight forward to show that 
the spin density at X must have the following general form. 

Q,(rx)= - A  ~ Icrol2 + Blcxol2-C y~ C, oCxo (23) 
r:~X r#X 

where the sums run over all nearest-neighbour atoms in the framework. The 
precise form of the"constants" A, B and C depends on the details of the embedding. 
For the system shown in Fig. (la) the constants are 

with: 

A -  sin220xc Icct~(rx) 
2E(0~Kxc) 

sin2 20xc f 2 
B - 2 E(0--* Xxc) + 

C -  sin40xc Ixct2(rx) ,  
2E (0 ~ ~xc) 

] 
11xx t2 (rx) 

E (0 --~/s l 
(24a) 

Icc = (tcp~ Igl P~tc>, Ixc = <txN I~1 p~t&, 
sin 20XH (24b) 

Ixx = <txpx Igl px x>, fxa  
sin 20xc " 

For the system shown in Fig. (1 b), the constants A and C are just as in Eq. (24a) but 

B -  sin2 20xc Ixxt2(rx). (25) 
2E(0--* ~Cxc) 

For the system shown in Fig. (lc) the constants are just as for system (la), on 

H 
/ 

C m X  
\ 

H 

(c) 

setting the factor fXH to zero. 

H C C 
I \ /  

X X 
/ \  I 

H H C 

(a) (b) 

Fig. 2 

Three other situations which are also of interest and give rise to an equation 
like (23) for the spin density at X, are indicated symbolically above in Fig. 2. 
The constants A and C for these systems are just as given in Eq. (24a) but for the 
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system shown in Fig. 2a 

B = sin 2 20 2 [3f~/E(O ~ ~Cxn)] Ixxt~(rx)/2 (26) 

while for the system shown in Fig. 2b 

B = sin 2 20xc [3/E(0~ ~Cxc)] Ixxt~(rx)/2 (27) 

and for the system shown in Fig. 2c 

B = sin 2 20xc [1/E(O--'tCxc) + 2f2n/E(O ~/s IxxtZ(rx)/2" (28) 

Calculations 

The coefficients Cro were determined by ordinary Htickel calculations on the 
molecule considered. In cases where X was a heteroatom, and in consequence 
parameter values were needed for the Htickel calculations, those given by Streit- 
wieser [6] were chosen. 

The integrals Icc, Ixc, etc., are regarded as disposable parameters and details 
of their choice will be discussed later. The remaining parameters necessary were 
chosen as follows. 

1. For a C-C  bond we assume that 0cc = 45 ~ and for heteropolar bonds 0xc 
is related to the appropriate valence state a-orbital electronegativities by the 
relation 

tan 0xy = Ey/Ex 

where Ey and Ex are the Mulliken valence state orbital electronegativities as 
obtained from the tables by Jaffe and Hinze [7]. 

2. We identify (see above) E ( 0 ~  xB,) with the singlet-triplet excitation energy 
of the Bith bond. In practice, such an excitation would result in spontaneous 
dissociation of the bond. It therefore seems plausible to assume that E (0~ : s , )  
is proportional to or differs by a small amount from the bond dissociation energy 
for homolysis of ith a-bond. 

3. We assume that tx(rx) will be proportional to the value the Schmidt 
orthogonalised (to ls) Slater-type 2s and 2p orbitals will take at the nucleus X. 
Thus, 

t ,(rx) = 2,4a / (at + t a 21 u.a. 

where at and a2/2 are the appropriate orbital exponents for ls, and 2s, 2p Slater 
orbitals, as determined by Slater's rules. 

A list of the parameters chosen can be found in Table 1 and the precise values 
of the Hfickel parameters are given with the tables exhibiting the results for 
heteroatomic systems. 

The integral Icc can be assigned from Eq. (20) and (21) and the parameters 
given in Table 1 if we assume that Ils(rn)] 2 is c2/~ a.u., where c is the orbital 
exponent of the hydrogen orbital. We must also assume that Q~H is known from 
experiment and we must assign a specific value to c. If we accept a value of 
26.8 gauss for QcHn and an orbital exponent of 1.16 (cf. [8]) for c, then we find a 
value of Icc of 0.3164 eV. There is of course a large measure of freedom in the 
24* 
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T a b l e  1. Constants and parameters for some magnetic nuclei 

A t o m  Yx Va lence  s ta te  or-electro- E(0--+Xxc ) 
X (rad.  sec -~ - g a u s s  -1)  of  n e u t r a l  nega t iv i t y  E ( 0 ~ X x n  ) 

a t o m  (Mul l iken)  (eV) 

t 2 (rx) (a.u.) 0XC 0XH 

1H 26753 - -  14.34 - -  

13 C 6728 t r t r t r ~  17.58 3.609 

4.478 

14 N 1934 t r 2 t r t r n  25.74 3.435 

pyr id ine - l ike  

14 N 1934 trtrtrTr z 24.63 3.435 

pyr ro le - l ike  4.348 

1 7 0  - 3628 t r2 t r2 t rn  34.14 3.913 

19 F 25179 s2p2p2p 24.36 4.783 

0.4968 a 

0.9549 

1.658 

1.658 

2.459 

3.712 

m _ _  

45 ~ 39.2 ~ 

34.3 ~ - -  

35.5 ~ 30.2 ~ 

27.2 ~ - -  

35.5 ~ - -  

a W i t h  c = 1.16, ~p2 ( H i s  a t  r = 0) = c3/~ a.u.  

E lec t ronega t iv i t i es  f r o m  Ref. [7] .  

7x f r o m  Ref. [40] .  
E ( 0 ~  K x c  ) de r ived  for  G b o n d e d  sys t ems  f r o m  Ref. [11] .  

choice of c, depending on the precise choice of H Qcn, and the choice made here 
was to some extent determined by the desire to obtain a value of Icc suitable 
for use in the calculation of 13C coupling constants. 

To evaluate 13C (i.e. in the case where X = 13C) coupling constants Icc is the 
only integral needed, so assuming that this integral is transferable we can evaluate 
these coupling constants immediately. In the 13C case 0xc = 0cc = 45 ~ and so 
further simplification of (23) is possible (again irrespective of the precise way in 
which X is embedded). For the I3C case the constant C vanishes and 

aX= - A  ~ Icrol 2 +Blcxol 2 (29) 
r + X  

where now the constants A and B are simply those appropriate to the particular 
embedding of X (i.e. 13C) multiplied by the appropriate factor as given in Eq. (19). 
The constants will be quoted in gauss. This equation is completely analogous to 
the equation of Karplus and Fraenkel [3]. 

The results of some calculations on ~3C splittings are given in Table 2, and 
it can be seen that they are in extremely good agreement with experiment. For 
conjugated ring systems there are only two types of embedding likely to be of 
general interest. The first is when the 13C is a "secondary" carbon (cf. Fig. la) 
and in this case 

A = 16.79 gauss, B = 46.74 gauss. 

The second is when the ~3C is a "tertiary" carbon (cf. Fig. 2b) in which case 

A = 16.79 gauss, B = 50.37 gauss. 

To evaluate the coupling constants when X is a heteroatom we need the 
integrals Ixx and Ixc to substitute into the general formula for the coupling 
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Radical Position Calculated a c Experimental a c (gauss) Ref: 

(gauss) anion cation 

2.197 2.8 - -  [12] 
benzene 

1 7.30 7.3 - -  [133 
2 - 0.97 1.0 - -  
9 - 6.06 - 5.6 

naphthalene 

9 8.76 8.76 8.48 [14] 
1 1  - 4.58 -4 .59  -4 .50  

1 3.57 3.57 - -  anthracene 
2 - 0.177 -0 .246 +_0.37 

1 - 2.48 -3 .478 -3 .20  [15] 

biphenylene 2 + 2.16 +2.362 +2.48 
9 + 1.82 - -  - -  

CH a methyl 39.48 (neutralradical) aC= 38.34 to 40 [16] 

Table 3.14N splittings in anion radicals a 

Radical Calculated Experimental Ref. Radical Calculated Experimental Ref. 
a N (gauss) a N (gauss) a N (gauss) a N (gauss) 

6.985 6.28 [17] ~ N ~  5.479 5.64 

pyridine quinoxaline 

I ~ N j  3.340 3.26 [17] ~ , N ~  5.706 5.14 

pyrimidine phenazine 

1~2 ~N~I 7.208 7.22 [17] ~N N f N ~ ;  ~ 2.490 2.41 

"LN-- 
pyrazine 1,4,5,9 tetraza- 

naphthalene 

4.265 3.60 [18] @ _ _ ~  3.731 3.64 

quinoline 4,4' dipyridyl 

4.307 3.48 [19] ~ _ ~  3.103 2.54 

acridine 2,2' dipyridyl 

[20] 

[20] 

[20] 

[20] 

[213 

a H/ickel parameters from Ref. [6]. h s = 0.5 kcN = 1.0. 
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constant. In the case where X is N, INN is in principle obtainable from Eq. (22), 
but unfortunately there does not appear to be the same fund of experimental 
evidence available for protons in pyrrole like N - H  bonds as there is for protons 
in C-H bonds. We are in similar difficulties with other heteroatoms. 

For the nitrogen coupling constants we performed a regression analysis on 
the data available for "secondary" nitrogens (cf. Fig. 1 c) in anion radicals and 
from the best values of A, B and C found, calculated the integrals. The value 
of INN was found to be 0.5610 eV while that of/NC was 0.128 eV and the values 
of the constants were 

A = 7.63 gauss, B = 27.06 gauss, C = 2.41 gauss. 

The results for the systems considered are shown in Table 3 and the agreement 
with experiment is seen to be very good. 

There is some experimental data available on nitrogen containing cation 
radicals where a proton is bonded to the nitrogen. Allowing for the fact that the 

Table 4. lgN and N-proton splittings in cation radicals 

Radical Splittings calculated with various Hfickel parameters Experimental split- 
a b o tings (Ref. [223) 

a N (gauss) a~n (gauss) d cr '~ (gauss) a~n (gauss) d a N (gauss) a~H (gauss) a a N (gauss) a~N N (gauss) 

H 

H 

dihydropyrazine 

H 

H 

dihydroquinoxaline 

-7.58 - 11,34 -8 .97 
5.66 9.86 7.30 7.40 - 7.94 

-6.45 - 9.67 -7 .64  

5.44 -7 .05 7.62 - 8,43 6.83 -8.15 6.65 -7 .17  
-6.01 - 7.18 -6.95 

H -6.66 - 8.21 -7 .57  
~ N ~  5,314 -5~68 7.82 - 7.00 6.66 -6 .45  6.14 -6 .49 

H 
dihydrophenazine 

-4 ,79  ~ x ~ x / = = ~ N  -3 .69  5.17 - 5.68 3.68 3.56 -4 .06 
H 3.19 -3.15 - 4.84 -4 .08 

dihydro-4,4' dipyridyl 

h~ = t.5, kcN= 0.8, see Ref. [6] (aniline-type nitrogen). 
b hN = t.5, kcN= 1.0, see Ref. [6] (unprotonated, pyridine-type nitrogen). 

h~ = 1.5, kcs = 1.0, 6h N = 0.3, see Ref. [22]. 
d Upper values calculated with QNuH--- 38.64 gauss (from Eq. (22) H is orbital exponent, c = 1.16); 
lower values calculated with Q ~ H = -  32.95 gauss (from Eq.(22) H l s  orbital exponent, c =  1.10). 



Isotropic Hyperfine Coupling Constants  in Aromatic Radicals 341 

nitrogen in these radicals will be more pyrrole-like and hence have a slightly 
different electronegativity from the nitrogen in the anion, constants can be 
calculated from the integrals derived above, appropriate to these cations. The 
constants are 

A = 7.86 gauss, B = 37.23 gauss, C = 2.19 gauss 

and the results of some calculations are shown in Table 4. 
In this table calculations are shown for various values of the Hiickel parameters 

for nitrogen and it can be seen that good agreement with experiment is obtained 
with accepted pyrrole type nitrogen parameters. In Table 4 we also show some 
calculated proton coupling constants for the N H  proton. It can be seen that 
better agreement with experiment can be obtained by taking an orbital exponent 
of 1.1 in the hydrogen ls orbital in this case, rather than the 1.16 found appropriate 
for a C - H  bond. 

To evaluate the coupling constants when X is a 19F atom outside the ring 
(cf.Fig. 1 b), a regression analysis was again performed on the available experimental 
data, best values of A, B and C found and from these the integrals IFc and IFF 
found. Both anions and cations were lumped together for the purposes of the 

Table 5.19F s p l i t t i n g s  a 

Radical Calculated Experimental Ref. Radical Calculated Experimental Ref. 
a v (gauss) a F (gauss) a v (gauss) a v (gauss) 

1.  - -  4 .  

F ~ F  3.189 3.13 [23] F ~ F  

4,4' difluorobiphenyl 4,4' difluorobiphenyl 
anion cation 

2. - 5. + 

F 
/ 

0.352 0.05 [23] 
(or 2.04) 

F F F 

3,3' difluorobiphenyl 1,5 difluoronaphthalene 
anion cation 

3. + 6. + 

4, fluorobiphenyl cation 

19.917 18.59 [24] 

F F 

F~ T "-F --V 
F F 

octafluoronaphthalene 
cation 

+ 

17.695 19.28 [24] 

17.713 16.98 [24] 

a~ r = 15.825 19.0 
a F =  6.044 4.7 [25] 

Hiickel parameters (Ref. [6]) hp = 3.0, kCF = 0.7. 
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regress ion since the differences in f luorine e lec t ronegat iv i ty  in the two types of 
system were t hough t  to  be negligible.  W e  would  no t  therefore  expect  vast ly 
different values  for the  constant .  

The  best  cons tan ts  were:  

A = 106.2 gauss, B = 684.4 gauss, C = 549.3 gauss 

and the in tegra l  values were IFF = 1.3146 eV and  IFC = 1.53 eV. 
The  results  a re  shown in Table  5. All  the ava i lab le  exper imenta l  da t a  (with 

the except ion  of  the c o m p o u n d  mmabered  6 in the table) were used in the  re- 
gression analysis.  The  agreement  with exper iment  is no t  except iona l ly  good,  but  
the m e t h o d  seems to be capab le  of  giving reasonab le  order  of magn i tude  agreements .  
I t  was no t  poss ible  to per form a m e a n i n g M  regress ion analysis  while c o m p o u n d  6 
(the oc t a f luo ronaph tha l ene  cat ion)  was inc luded  in the data .  In  view of  the  
p r o b a b l e  confo rma t ion  of  this rad ica l  this is pe rhaps  not  surpr is ing  and  it is 

Table 6. ~70 and ~ 3C splittinos in semiquinone radicals ~ 

Radical Position Calculated Experimental Ref .  Calculated Experimental Ref. 
a ~ (gauss) a ~ (gauss) a c (gauss) a c (gauss) 

- 0 - 11.56 -9.53 [26] 
1 -6.69 _+2.13 [27] 
2 -0.26 

0 + 
O 

p-benzosemiquinone 

O 

0 

1 , 4  naphtho-semiquinone 

O 

O 
anthrasemiquinone 

0 
~ 

O 

2,5 dioxy-p-benzosemiquinone 

0 - 9.30 -8.58 [26] 

0 
1 

2 
12 
13 

- 7.61 -7.53 

3 -  0 - 6.65 -457  
1 

3 

[26] 
+ 0.47 
+ 0.47 
- t.80 
-1.83 

[26] 
-2.63 
-4.20 

1 or 13, -1.21 

- 0.47 

+2.63 
- 6.66 

[28] 

[28] 

a Hfickel parameters (Ref. [6]) h6 = 1.0, kco = 1,0, 
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remarkable that the estimated coupling constants for it come as close as they do 
to experiment. 

Very little experimental evidence is available on oxygen containing hetero- 
cycles, and an attempt was made to assign the integrals Ioo and Ioc from the 
integral values already obtained. 

To find Ioo the values of Icc and IFF were plotted as a function of atomic 
number, a smooth curve drawn through them and a value of Ioo interpolated 
as Ioo = 0.865 eV. The problem of assigning Ioc could not be solved so simply; 
however it was found that satisfactory agreement with experiment could be 
obtained by taking Ioc = ~ c l F c  = 0.443 eV. It is difficult to justify this observation 
in any a priori way, but in view of the position of oxygen in the periodic table it 
seems a plausible assignment. 

The results of the calculations on some oxygen containing systems are shown 
in Table 6. The values of the constants for the 170 couplings are 

A = - 14.21 gauss, B = - 39.04 gauss, C = - 28.45 gauss. 

Also shown in Table 6 are some 13C coupling constants calculated for a 13C 
atom in the ring bonded to an 170 atom. We have not so far considered the 
kind of equation appropriate for the 13C coupling constant in this case, but it is 
easy to extend the analysis leading to (23) to show that for two atoms X and X' 
in this kind of embedding (as in Fig. 1 a with X' replacing H): 

a X = - A  xx ~ IcrolZ+BXXlcxol2-C xx Y~ CroCxo 
r4-X reX (30) 

_ ZXX ' iCx,ol 2 + B xx'lcxol 2 - CXX'(cxoCxro) 

Table 7. Miscellaneous "predictions" on available data 

Radical X Calculated Experimental Ref. 
a x (gauss) a x (gauss) 

a + 

O 1 2 laC a C = - 2 " 1 7 5  axC=+2"58 
~ U ~  a c =  + 1.760 aC= 1.58 [29] 

dibenzdioxin cation 

a 

N I4N a N = 5.601 a N = 5.92 [21] 

pyridazine anion 

a 

14N a N= 3.749 aN= 3.37 [21] 

1,5 diazanaphthalene anion 

a Hiickel parameters (Ref. [6]). h 6 = 2.0, kco = 0.8, hf~ = 0.5, kcN= 1.0. 
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where the sums run over the carbon atoms adjacent to X in the ring. In the case 
where X = 13C, C xx vanishes and the constants appropriate to X = 13C, X' = 170 
are 

A c c =  16.79 gauss, BCC= 33.58 gauss; 

A c~ = 27.94 gauss, B c~ = 10.17 gauss, C c~ = - 20.21 gauss. 

While the calculated 170 coupling constants shown in Table 6 appear to 
agree in magnitude and sign with the experimentally observed constants, the 
agreement for 13C coupling constants is very poor. It is interesting to note, 
however, that there is one case in which good agreement in absolute magnitude 
between the observed on calculated constants is obtained, though the calculated 
sign is opposite to the one assigned experimentally. 

Finally, we show in Table 7 some results for systems containing more than 
one heteroatom in the ring, and for which coupling constants can be predicted 
using the present theory, and here there seems to be very satisfactory agreement 
with experiment. 

Discussion 

It would seem that the theory presented in this paper is capable of unifying 
fairly adequately a wide range of experimental observations in ESR spectroscopy. 
It is also capable of almost unlimited extension to other kinds of n-radical, 
provided that suitable parameter  values can be found. 

It is recognised that the parametrisation of a scheme like that presented here 
is, to some extent, arbitrary, but we believe that the parametrisation offered here 
is physically plausible. Furthermore,  there are not so many free parameters in 
the scheme that the fitting of experimental to calculated results becomes a trivial 
exercise in curve fitting. The significant fact appears to be that with a plausible 
choice of a few parameters a large body of experimental data can be unified. 

While this paper was in the course of preparation, the paper of Yonezawa 
et. al. [9] appeared in which a theory of similar scope to that given in this paper, 
was developed. These authors developed the theory in terms of a basic U H F - S C F  
calculation followed by limited configuration interaction. The theory offered 
here has the advantage (perhaps slight) of offering the same range of correlations 
in terms of a somewhat simpler basic calculation. 
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